сплайн
1Сплайн — (от англ. spline, от [flat] spline  гибкое лекало, полоса металла, используемая для черчения кривых линий)  функция, область определения которой разбита на конечное число отрезков, на каждом из которых сплайн совпадает с некоторым… …
2сплайн — сущ., кол во синонимов: 1 • функция (49) Словарь синонимов ASIS. В.Н. Тришин. 2013 …
3сплайн — (Spline) Математическая кривая, плавно соединяющая отдельные точки. Применяется для изображения контуров знаков [граница изображения знака]. См. также кривые Безье [метод описания веторных кривых] …
4Сплайн-функция — [spline function] кусочно гладкая функция, используемая для выравнивания временных рядов. Применение С. ф. вместо обычных функций тренда эффективно, когда внутри анализируемого периода меняется тенденция, направление ряда. С. ф. помогает… …
5Сплайн Эрмита — Кубический эрмитов сплайн сплайн, построенный из кубических полиномов с использованием эрмитовой интерполяции, в соответствии с которой интерполируемая функция задается не только своими значениями в n точках, но и ее первыми производными. Для… …
6СПЛАЙН-АППРОКСИМАЦИЯ — приближенное представление функции или приближенное восстановление функции из заданного класса по неполной информации (напр., по значениям на сетке) с помощью сплайнов. Как и в классич. теории приближения функций, изучаются линейные методы С. а …
7СПЛАЙН-ИНТЕРПОЛЯЦИЯ — интерполирование посредством сплайнов, т. е. построение интерполяционного сплайна (и. с.), принимающего в заданных точках {xi}заданные значения {f(xi)}, i=0, 1, . . ., n. Обычно и. с. удовлетворяют дополнительным условиям в концевых точках. Так,… …
8СПЛАЙН — функция определенная на отрезке [a, b],совпадающая на частичных отрезках [ х i, xi+1], образованных сеткой а=x0<x1<. . .. . . <xn=b с нек рыми алгебраическими многочленами степени не выше т, и имеющая на [ а, b]непрерывную ( т 1) ю… …
9сплайн — а, ч. Одна з елементарних функцій, включена у сучасний числовий аналіз …
10ИНТЕРПОЛЯЦИОННЫЙ СПЛАЙН — сплайн совпадающий с данной функцией в заданных различных точках Обычно при m=2k+1 полагают r=0, 1, ..., п, и так как при этом у сплайна остается еще 2k свободных параметров, то на сплайн налагают еще по кусловий в точках х 0 и х п, напр., j=1, 2 …